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laminar free convection on an isothermal p la te ,  For a num- 

ber of specif ic  cases, solutions of the equations appro- 

p r i a t e  t o  the variable property s i tuat ion were carr ied out f o r  gases and 

f o r  l i qu id  mercury. Uti l iz ing these findings, a s inple  and accurate 

shorthand procedure i s  presented fo r  calculating free convection heat 

t ransfer  under variable property conditions. This calculation method i s  

w e l l  established i n  the heat t ransfer  f i e l d .  It involves the use of re- 

s u l t s  which have been derive-r constant property f lu ids ,  and of a set 

of ru les  (cal led reference tempehiures) fo r  extending these constant 
x v -  

property r e su l t s  t o  variable property si t ; iat ions.  For gases, the con- 

s t an t  property heat t ransfer  r e su l t s  are  generalized t o  the variable 

property s i tua t ion  by replaci’ng, f3 (expansion coeff ic ient)  by l/To 

and evaluating the other properties a t  

l iqu id  mercury, the generalization may be accomplished by evaluating a l l  

the  properties (including p )  at  t h i s  same T,. It i s  worthwile noting 

Tr = Tw - 0.38(Tw - T - ) .  For 
! 
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. t h a t  for  these f lu ids ,  

appears t o  serve as an 
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the  fi lm temperature (with f3 = 1/T, f o r  gases) 

adequate reference temperature f o r  most applica- 

t ions.  Results are also presented for  boundary layer thickness and 

veloci ty  parameters. 

NOMENCLATURF, 

coeff ic ients  I n  the polynoiiidl representations of f l u i d  
pmper t ies  of liquid mercury 

dimensional constants i n  Sutherland ’ s formulas of tab le  1, 
A1 = 362” F abs, A2 = 198.7’ F abs 

p la te  width 

di:aensional constant defined by eq. (sa) 
spec i f ic  heat a t  constant pressure 

coeff ic ient  of f r i c t i o n  defined by eq. (29)  

dimensionless dependent variable defined by eq. (6b) 

acceleration due t o  gravity 

Grashof number based on x, dimensionless, see eqs. (13), 
(=a), (13b) 

Grashof nunber based on L 

l oca l  heat t ransfer  coefficient,  q/(T, - To) 

average heat t ransfer  coefficient,  Q/Lb(T, - To) 
thermal conductivity 

p l a t  e hei ght 

l oca l  Nusselt number, hx/k, dimensionless 
- 

average Nusselt number, hL/k, dimensionless 

s t a t i c  pressure 

F’randtl number, cpp/k, diuensionless 

l o c a l  heat t ransfer  rate per un i t  area of p la te  
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over-al l  heat t ransfer  ra te ,  b , rL q dx 
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Fahrenheit temperature 

f i l m  temperature, ( T ~  + T-)/z; o r  tf = (tv + t,)/Z 

veloci ty  component i n  x direction 

m a x i m u m  value of u across the boundary layer  

0 
velocity component i n  y direction 

r a t e  of f l u i d  flow generated by f r ee  convection, b 

coordinate measuring distance along p la te  from leading edge 

! 
0 

pu dy 

coordinate measuring distance normal t o  p l a t e  

distance from p la t e  a t  which umax occurs 

coeff ic ient  of thermal expansional, - Pi.), lP 
boundary layer thickness defined as distance from pla te  a t  which 

(T - T,)/(Tw - T,) = i 

dimensionless s imi la r i ty  variable defined by eq. (sa) 
dimensionless temperature variable, (T  - Tm)/(Tw - T-) 

absolute viscosi ty  

kinematic viscosity,  p/p 

density 

shear s t r e s s  at p l a t e  surface 

stream function 

Subs c r i p t  s 

W denotes w a l l  conditions 

0 denotes ambient conditions 

r denotes conditions at  reference temperature 
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INTRODUCTION 

The presence of a b ~ y a n c y  f o r m  is  a requirement f o r  the existence 

Ordinarily, the buo’yancy ar i ses  f r o m  density 
z 

of a free convection flow. 

differences which are a consequence of temperature gradients within the 

f lu id .  Any analyt ical  treatment of free convection must include density 

variations at l e a s t  to the extent that ,a buoyancy force enters the 

problem. 

A character is t ic  common t o  previous analyt ical  studies of free con- 

vection has been the neglect of all f lu id  property variations, except f o r  

the essent ia l  density differences noted above*. Such a simplified treat- 

ment does not appear unreasonable when the temperature differences in- 

volved are  s m a l l .  This in tu i t i ve  feeling has been corroborated i n  a 

formal manner by Ostrach ( 2 ) .  For si tuations where there are large t e m -  

perature differences, the adequacy of the r e su l t s  derived from the con- 

s t an t  property analysis has been i n  doubt. 

An analyt ical  treatment of the variable property problem, including 

numerical solutions, first appears to have been given in the thes i s  (1) 

from which t h i s  paper i s  taken. Some time after the appearance of Ref. 

1, a much less extensive study w a s  described i n  a Russian a r t i c l e  by 

Tanaev (3). 

sentation here. 

There is  no significant overlap between..Ref. 3 and the pre- 

The analysis i s  made fo r  an isothermal ver t ica l  plate,  and the flow 

i s  taken to  be laminar. For a large number of specif ic  cases, numerical 

*The f l u i d  properties entering the problem are the thermal conduc- 
t i v i t y ,  viscosity, specif ic  heat, and density. 
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solutions of the boundary layer  equations appropriate t o  the variable 

property s i tua t ion  were carried out for  gases. 

t o  a l so  study the variable property problen f o r  several  l iqu id  m e t a l s ,  

However, the nature of the property variations and the exceedingly t i m e  

consuming numerical computations forced the current study t o  be l imited 

t o  one l iquid metal, namely, mercury. 

It was i n i t i a l l y  planned 

P r i m e  a t tent ion is  focused on the heat t ransfer .  Uti l iz ing the heat 

t ransfer  r e su l t s  corresponding t o  special cases for  which numerical solu- 

t ions were obtained, a simple and accurate shorthand procedure i s  pre- 

sented f o r  computing heat t ransfer  under variable property conditions i n  

gases and l iquid mercury. 

f ie ld .  It involves the use of results derived fo r  constant property 

f lu ids ,  and of a set of rules  f o r  extending the constant property results 

t o  variable property sftuations.  These ru les  are commonly termed refer-  

ence temperatures. Not only will reference temperatures be derived fo r  

the heat t ransfer ,  but also f o r  boundary layer thickness and velocity 

parameters, Those who are interested primarily i n  r e su l t s  are invi ted 

t o  pass over the section on analysis. 

This method i s  w e l l  known i n  the heat t ransfer  

/ 
ANALYSIS 

Physical model and coordinates. - The physical model and the co- 

ordinate system are portrayed i n  an elevation view i n  Fig. 1. 

i c a l  s i tuat ions are  shown which come within the scope of the analysis. 

The lef t  hand sketch depicts the case where the wall temperature, Tw, 

exceeds the ambient temperature T-. Under these circumstances the free- 

convection motion i s  upward as shown. 

s i tua t ion  where Tw i s  lower than the ambient temperature T-. I n  t h i s  

case, the f l u i d  flow i s  downward along the plate .  

Two phys- 

The right hand sketch shows the 

~ 



- 6 -  

If the coordinate systems are taken as indicated, the mathematicd 

d i s t inc t ion  between the  two s i tuat ions vanishes when the conservation 

equations, as wri t ten l a t e r ,  are made dimensionless. So, separate analy- 

ses need not be made. Since it seems easier to visual ize  occurrences 

associated with the hot w a l l  cas,e, i.e., Tw > T,, the  analysis w i l l  be 

directed toward t h a t  s i tuat ion.  However, the results w i l l  be presented 

i n  a manner applicable t o  both T, > To and Tw < To. 

Conservation l a w s .  - The equations expressing conservation of m a s s ,  

momentum, and energy for steady flow i n  a boundary layer  on a v e r t i c a l  

p l a t e  are 

Viscous d iss ipa t ion  and work against the gravity f i e l d  have been 

neglected. 

The boundary conditions appropriate t o  the problem are 

v =  0 

T = To 
T = Tw 

(5) 

where T, and T- are prescribed constants. 

From Eq. (3), it follows t h a t  the pressure p is  a function of x 

So, ap/& i s  alone (i .e., a function only of height along the  p la te ) .  
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constant across the boundary layer and may be evaluated as 

&/ax = - P,g 

With t h i s  substi tution, Eq. ( 2 )  becomes 

There appears i n  t h i s  equation a density difference, p, - p, which pro- 

vides the  buoyancy force f o r  the free convection motion. 

The customary approach followed i n  the constant property analysis 

i s  first t o  replace the density difference by a temperature difference, 

and then t o  assume tha t  p, w ,  cp, and k are constant. 

The present analysis continues without placing any r e s t r i c t ions  on 

The solution of Eq. (1) may, as the nature of the property variations. 

usual, be writ ten i n  terms of a stream m c t i o n  $ defined by the 

re la t ions  

where h, the f l u i d  density a t  the w a l l ,  is regarded as a constant. 

Then,the velocity components u and v which appear i n  Eqs.  (2a) and 

(4) are replaced i n  favor of the stream function $. The result of the 

subst i tut ion i s  a rather  complicated looking pa i r  of simultaneous par t ia3 

d i f f e ren t i a l  equations f o r  Jr and T as functions of x and y. 

Rather than deal w i t h  these two formidable p a r t i a l  d i f f e ren t i a l  equations 

direct ly ,  experience suggests a method of transforming them t o  ordinary 

d i f f e ren t i a l  equations, which are easier to  solve. 

ology of  boundary layer theory, such a transformation is  cal led a s i m i -  

lari t y  transformation. 

I n  the usual termin- 
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Reduction t o  ordinary d i f fe ren t ia l  equations. - A new independent 

var iable  T), cal led a s imi la r i ty  variable, i s  defined by 

'1 = cx - dY 

where 

New dependent variables F and 8 are given by 

T - To 
e (T) )  = Ti i T, 

1 

0 i 

( S P )  1 
The function 0 is  a dimensionless temperature and F i s  re la ted  to the  

ve loc i t ies  i n  the following way 

The primes represent d i f fe ren t ia t ion  with respect t o  7. 

Uqder the transformation E q s .  (sa) and (b) ,  the p a r t i a l  d i f f e ren t i a l  

equations f o r  $ and T become 

The Prandtl number i s  represented by Pr and the  subscript  w denotes 

conditions a t  the w a l l  (y  = 0). The boundary conditions, Eq. (51, t rans-  

form t o  
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It may be noted that the transformation relations,  as well as the  

resul t ing ordinary d i f f e ren t i a l  equations, can be reduced d i rec t ly  t o  the 

well-known equations fo r  the constant property f luid.  Further, all solu- 

t ions  of Eqs. (8) subject t o  the boundary conditions (9 )  have the  charac- 

t e r i s t i c  t ha t  u = 0 and T = T along the l i n e  x = 0. .. 
Simplifications associated with p = pRT. - For the special  case of 

f lu ids  which obey the perfect gas law, p = pRT, there are cer ta in  simpli- 

f ica t ions  which can be introduced into the analysis. 

buoyancy force, g(po - p) ,  which appears i n  Eq. (2a). 

th i s  density difference can be transformed in to  a temperature difference 

Consider first the 

For a perfect gas, 

without making any approximations. It is  only necessary t o  notice tha t  

both p, and p are t o  be evaluated a t  the same value of x, and con- 

sequently, at the same s t a t i c  pressure p. With t h i s  i n  mind, it follows 

d i r ec t ly  tha t  

I n  the constant property analysis, it has been customary t o  write 

P, - P = @(T - To) 
where f?, i s  the coefficient of expansion. So, it is  seen t h a t  the 

buoyancy force used i n  the constant property analysis is  precisely cor- 

r ec t  f o r  a perfect gas, provided that  f?, is  replace by l/To. 

Further, i n  the d i f fe ren t ia l  Eqs. (e), the dimensionless buoyancy 

force (the last term) can be simplified t o  



t 

- 10 - 
So, Eqs, (8) become 

It is  worthwhile noting tha t  for a very special  so r t  of variable 

property gas, Eqs? (sa) reduce t o  the equations f o r  a constant property 

f luid.  Consider a gas having the property variations: p = pRT, pp = 

constant, pk = constant, cp = constant. 

tremendous simplif icat ion afforded by the assumption tha t  

Inspection of Eqs (sa) show the 

pp = constant 

and pk = constant. It follows that 

and a lso  tha t  

number (= cpp/k) is  a lso  a constant. 

k/p = constant. Further, it is  seen tha t  the Prandtl 

Then Eqs. (88) may be rewrit ten as 

But, these equations are precisely those fo r  the constant property prob- 

l e m .  Also ident ical  are  the boundary conditions. So, f r o m  the mathe- 

matical point of view, the constant property problem i s  ident ica l  t o  tha t  

f o r  the special  variable property fluid:  p = pRT, pk = constant, 

pp = constant, cp = constant. 

the constant property d i f f e ren t i a l  equations become .available f o r  t h i s  

All solutions which have been obtained f o r  

special  variable property f h i d .  

It is  interest ing t o  note tha t  a s i m i l a r  finding applies i n  forced 

convection. I n  fac t ,  a common procedure fo r  accounting f o r  variable - 



. 
z 

- 11 - 
property e f f ec t s  f o r  forced convection over a f la t  p la te  is  t o  postulate 

t h a t  t he  r e a l  gas i s  su f f i c i en t ly  well approximated by the spec ia l  gas 

j u s t  considered. 

HEAT TRANSFER PARAMETERS AND GRASHOF NUMBERS 

Local heat t ransfer .  - The local  heat f l ux  from the  surface t o  the  

f l u i d  may be calculated using Fourier 's  Law 

Introducing the dimensionless variables from E q s .  (sa) and (b) , the ex- 

pression f o r  q becomes 

The der ivat ive [ d 0 / d ~ ] ~ ~ ,  normally abbreviated 0 ' ( 0 ) ,  is  found from the 

solut ions of E q s .  (8). A dimensionless representation of t he  r e su l t s  is  

achieved by use of the loca l  heat transfer coeff ic ient  and local Nusselt 

number, which are wri t ten i n  the usual way as 

9 
Tw - T-' h z  

Further, a generalized Grashof number 

s t a n t  and variable property f l u i d s  i s  

hx 
Nux E k 

which i s  applicable to  both con- 

defined by 

The absolute magnitude sign removes the necessity f o r  separate consider- 

a t ion  of Tw > To and Tw < T,. 

U s i n g  these def ini t ions of h, Nux, and G r x  the  l o c a l  heat f l ux  

given by Eq.  (11) becomes 

(14) 
C-S~(O)I 1/4 

Grx,w 4 NUX'W = 
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where the second subscript  on the Nusse l t  and Grashof numbers indicates  

the  locat ion a t  which k and v are evaluated. 

Overall heat t ransfer .  - The overall  heat t r ans fe r  Q i s  found by 

in tegra t ing  Eq. (11). So, 

Q = b J L q d x  

where b i s  the p la te  width. Introducing the following dimensionless 

leads t o  the following dimensionless result f o r  the overa l l  heat t ransfer  

The Grashof number. - The generallzed Grashof number defined by 

Eq. ( W )  a r i s e s  natural ly  from the analysis of the  general variable 

property f lu id .  

cases i s  of i n t e re s t .  

The form taken by th i s  def in i t ion  fo r  cer ta in  special  

For instance, f o r  the constant property analysis,  Eq. (13) simpli- 

f i e s  t o  - TJx 3 

Gr, = (=a> 
V 2  

This i s  iden t i ca l  to  usual Grashof number def ini t ion.  

For a perfect gas, the Grashof number becomes 

2 Gr, = 
T u  
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DESCRIPTION OF THE GASES STUDIED 

I n  previous variable properties analyses f o r  gases, it has been 

common t o  use idealized forms of the property variations. 

been a f e w  instances where real gas properties were used. 

study, both idealized and real gases have been included, the real gas 

being a close approximation to  air. Table I, describes the f ive  gases t o  

be considered here i n  the order (reading t o  l e f t  t o  r igh t )  i n  which they 

w i l l  be discussed. A l l  are seen t o  obey the perfect gas l a w ,  p = pRT, 

Absolute temperatures are used exclusively throughout the analysis f o r  

gases. 

There have 

I n  the present 

TABLE I 

Description of Gases A, B, C, D, and E 

G a s  A G a s  B Gas -‘C G a s  D Gas E 

T 3/2 T 3/2 
k i  

k - g i 4  k - T  2/3 pk = const. k - T + A 1  T + A1 

I = b, + b,T I 
U 

‘p= b2 + <T 1 ,  cp = const. cp = const. cp = const. cp = const. I 
I Pr = const. Pr = const. Pr = const. Pr = const. Pr = variable I 
I i ’  

Gases A, B, and C represent simple Idealizations of real gas be- 

havior. The power law variations for  k and p are commonly used 

i’ 
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approximations. The assumption of constant spec i f ic  heat and Prandtl 

number i s  included because, f o r  real gases, the  var ia t ion of these prop- 

erties is  s m a l l  compared t o  those of k, p, and p. The Sutherland type 

formula used t o  describe the conductivity and viscosi ty  var ia t ions of gas 

D i s  closer t o  r e a l i t y  than are the simple power l a w s ,  Since c and 

Pr are maintained as constants f o r  gas D, the same Sutherland formula 

i s  used f o r  k and p. G a s  E i s  a close approximation t o  air. Hence, 

var ia t ions of cp and Pr are included, and d i f fe ren t  Sutherland for-  

m u l a s  are used f o r  k and p (Alf Az). Two l i n e a r  equations a re  used 

t o  represent the  spec i f ic  heat variation over the temperature range 

studied . 

P 

REAT TRANSFER RESULTS FOR GASES 

Heat t ransfer  r e su l t s  f o r  gases A through E w i l l  be presented f o r  a 

large number of special  cases. Util izing these resu l t s ,  a rapid and 

accurate shorthand method w i l l  be presented f o r  calculat ing heat t ransfer  

t o  gases under variable property conditions. 

INTRODUCTION, the calculation procedure involves the use of r e su l t s  which 

have been derived f o r  constant property f lu ids ,  and of a ru l e  f o r  ex- 

tending these constant property results t o  var iable  property s i tuat ions.  

This r u l e  i s  commonly cal led a reference temperature. 

As described i n  the 

The following approach w i l l  be used here i n  deriving and t e s t ing  a 

reference temperature r u l e  for  heat t ransfer .  F i r s t ,  using the numerous 

numerical calculations for  gas A, a reference temperature r u l e  w i l l  be 

derived., Then, t e s t s  of t he  wider appl icabi l i ty  of t h i s  reference t e m -  

perature result w i l l  be made using the l e s s  numerous solutions f o r  gases 

B, C, D, and E. 
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Result6 f o r  gas A. - The properties of gas A are given i n  Table I. 

I n  order t o  compute the heat transfer, it i s  first necessary t o  

solve the d i f f e ren t i a l  E q s .  (sa) subject t o  the boundary conditions (9). 

The gas properties appearing i n  E q s .  (sa) may be evaluated f o r  gas A with 

the a id  of Table I. cp/cpw = 1, Pr = constant So, it is seen tha t  and 

Introducing the dimensionless temperature 

follows tha t  

8 = (T - Ta)/(Tw - T ), it 
a 

I n  l i g h t  of t h i s ,  it may be observed tha t  before commencing with a solu- 

t ion  of E q s .  (8a) t o  f ind F and 8, it i s  necessary first t o  specify 

the value of 

of t h i s  temperature r a t i o  i s  associated with the variable property 

problem. But, the f a c t  t ha t  only a temperature r a t i o  appears i s  actual ly  

a considerable simplification; since f o r  the general variable property 

f l u i d  it i s  necessary t o  specify Tw and T separately. 

of E q s .  (8a) f o r  gas A were carried out f o r  a 

T,/T- (as  w e l l  as of the Prandtl number). The appearance 

a 

* 
Numerical solutions 

wide range of values of Tw/TI for Pr = 0.7 and fo r  selected values of 

Tw/T, f o r  Pr = 1.0. The heat transfer resu l t s  corresponding t o  these 

solutions are l i s t e d  i n  Table 11. The Nusselt and Grashof numbers, di-  

mensionless parameters, are given by Eqs. (12) and (13b), respectively. 

* A l l  numerical integrations were carried out on an IBM Card Pro- 
grammed Calculator using a technique presented i n  d e t a i l  i n  appendix B 
of reference 2. 
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TABLE I1 

Heat Transfer Results f o r  G a s  A 

Pr= 0.7 
~~~ 

0.371 

0.368 

0.366. 

0.363 

0.348 

0.339 

0.330; 

0.323.. 

Pr = 1.0 

0.418 

0.375 * 

Now, w e  proceed t o  generalize these resu l t s .  Attention i s  first 

focused on Pr = 0.7.  

property f luid,  it i s  found tha t  the heat t ransfer  ( for  

From an analytical  solutlon f o r  the constant 

Pr = 0 . 7 )  i s  

Here, the Grashof number i s  given by Eq. (l3a). We are immediately led  

t o  ask whether there i s  some way by.which the constant property resu l t ,  

Eq. (19), can be made to coincide with the variable property results 

appearing i n  Table 11. It may be observed tha t  the temperature for  

evaluating k, v ,  and f3 i n  Eq. (19) i s  at  our disposal. With regard t o  

f3, it has already been shown tha t  it i s  proper t o  replace f3 by l/T- 

when perfect gases are involved. It i s  a matter of Qaking a f e w  trials 

This  r e su l t  may also be thought of as a h l y i n g  t o  gas A-when) i- * 
TW/TI 1. 
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t o  determine the temperature f o r  evaluating k and v of Eq. (19) which 

gives the best  agreement between the constant property r e su l t  and the 

variable property findings of Table 11. 

termed a reference temperature 

This temperature, which may be 

T,, is found t o  be 

Tr = Tw - O 0 3 8 ( T W  - To), B = 1/T, (20)  

A s  shown by the dashed l i n e  of Fig. 2, the error i n  the heat t ransfer  

predicted from the constant property r e su l t  by using t h i s  reference t e m -  

perature i s  a t  most 0.6 percent over the  en t i r e  range 

Figure 2 also shows the errors i n  the heat t ransfer  predicted from the 

constant property r e su l t  when k and y are evaluated at  the w a l l  t e m -  

perature, at  the ambient temperature, and a t  the f i l m  temperature 

B is  taken as 1/T, i n  all cases, It is  noteworthy tha t  the use of Tf 

as a reference temperature provides heat t ransfer  resu l t s  which would be 

adequate f o r  almost e l l  engineering purposes. 

1/4 5 Tw/To 5 4. 

Tf. 

The r e su l t s  l i s t e d  i n  Table I1 for  Pr = 1 were obtained t o  check 

Pr E 0.7 could be applied whether the reference temperatures found fo r  

f o r  the en t i re  range of gas Prandtl numbers. When reference temperatures 

were computed f o r  Pr = 1, they were found t o  be i n  excellent agreement 

with those f o r  Pr = 0.7. So, it i s  f e l t  t ha t  Eq. (20) i s  val id  fo r  the 

enkire Prandtl number range of gases. 

,Raving established a reference temperature ru l e  f o r  gas A, w e  now 

proceed t o  see i f  it can be used for predicting variable property heat 

t ransfer  r e su l t s  fo r  other gases. 

Results fo r  gas B. - A s  maybe seen from Table 11, gas B differs 

from gas A only by a lowering of the exponent i n  the conductivity and 

viscosity variations. The lower exponent becomes more appropriate i n  

describing r e a l  gas behavior as the temperature increases. 
~ ~ 
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G a s  B w i l l  be t reated i n  the following way: A special  case w i l l  be 

selected and heat t ransfer  r e su l t s  w i l l  be computed based on a solution 

of Eq. (sa). Then, f o r  the same special case, an al ternate  heat transfer 

r e su l t  i s  computed for  gas B using the constant property formula and the 

reference temperature rule of Eq. (20). 

t ransfer  results provides a test of the reference temperature procedure. 

The comparison of the two heat 

The case selected f o r  study i s  Pr = 0.7, T,/T = 3. From a numeri- 
m 

c a l  solution of Eq. (sa) ,  it i s  found tha t  

1/4 
GrL,, - 14 NuX,,/Grx,, 1/4 = 0.373 =  NUL,^ 

The Grashof number i s  given by Eq. (l3b). Then, using the constant 

property formula, Eq. (19), and the reference temperature re la t ion,  

Eq. ( 2 0 ) ,  an al ternate  heat t ransfer  r e su l t  for  gas B i s  

N%,w/Grx,w 1/4 = 0.370 = -  NUL,^ 14 5 GrL,w 1/4 

It i s  seen that the prediction using the reference temperature procedure 

is  very good. 

Results f o r  gas C. - The very special mathematical simplifications 

which a re  associated with gas C have already been pointed O U t j  see Eq. 

(8b) and associated discussion. 

need not be specified. 

Inspection of Eq. (8b) shows tha t  Tw/T 
0 

From a numerical solution of Eq. (ab), the heat transfer r e su l t  f o r  

gas C f o r  Pr = 0.7 i s  found t o  be 
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where Grx i s  given by Eq. ( l3b).  A s i m i l a r  finding is  true for  the 

overal l  heat transfer.  It is thus seen that ,  as a consequence of the 

special  properties of gas C, the ratio I?~~/Grrk/~ is  independent of the 

second subscript indicating where the properties are evaluated. 

Looking now at  the constant property formula, Eq. (19), it is  seen 

tha t  no matter how the properties are evaluated, i t s  heat transfer result 

coincides with the variable property r e su l t  of Eq. (22).  (That is, pro- 

vided tha t  p i s  evaluated as 1/T .) So, the reference temperature of 

Eq. (20) i s  cer ta inly sat isfactory for gas C.  

m 

Results for gas D. - It has already been pointed out i n  the dis- 

cussion of Table I tha t  a Sutherland type representation for k and p 

i s  generally closer t o  r e a l i t y  than are simple power.laws. For gas D, 

the assumptions of constant c and Pr are  maintained, so the same 

Sutherland re la t ion  i s  used for  k and p. The constant A1 appearing 

i n  Table I is  assigned the value 362' F abs. This number is  from a cor- 

re la t ion  by Glassman and Bonilla (4) of thermal conductivity data for air. 

P 

With the a id  of Table I, the property groupings pp and pk which 

appear i n  the d i f f e ren t i a l  Eqs. (sa) may be evaluated. 

sionless temperature 

When the dimen- 

6 = (T - T-)/(Tw - T-) is  introduced, there r e su l t s  

= [; + e(1- 

Careful inspection of t h i s  expression shows tha t  Tw and T must be 

separately specified before a solution of Eq. (8a) can be carried out. 

I n  other words, specif ic  problems must be considered. 

.. 
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We proceed t o  test the reference temperature re la t ion  (20) i n  the 

same fashion described f o r  gas B. Heat t ransfer  results based on solu- 

t ions  of the d i f f e ren t i a l  equations are compared with al ternate  results 
< 

determined using the reference temperature procedure. 

special  cases are consideredt 

I 
From numerical solution of Eq. (sa), the heat t ransfer  resu l t s  fo r  these 

The following two 

r 

Tw = 600' F abs 

T 0 = 1800' F abs 1 case I1 

Y 

=FT = 0.7 

T, = 1800° F abs 

Pr = 0.7 

T = 600' F abs 

case I 

.. 
r cases a re  

0.371, case I 

0.335, case I1 
1/4 - 1 4  c,1/4 

N%K,w/Grx,w = NUL,W 5 L,w 
L 

Alternately, heat t ransfer  resu l t s  can be computed for gas D fo r  these 

cases by using the constant property formula, Eq. (19), and the reference 

temperature rule, Eq. ( 2 0 ) .  The results are  
r 

0,370, case I 

0.335, case I1 
L 

Again, it i s  seen tha t  the predictions using the reference temperature 

procedure are good indeed. 

Results for  gas E. - As has already been pointed out, gas E is meant 

t o  be a close approximation to  air. The k and p variations are r e p  

resented by Sutherland formulas (see table  I)  taken respectively f r o m  

Glassman and Bonilla (4)  and the NBS Tables (5). The constants A1 and 

A2 

(110.4' K),  respectively. 

Tables, i s  represented by two s t ra ight  l i nes  over the temperature range 

appearing i n  these representations are  362' F abs and 198,7O F abs 

The specific heat data, taken from the NBS 



- 21 - 
studied. The var ia t ion of the Prandtl pumber need not be specified,  

s ince it is  determined once cp, k, and p a re  given. 

The\property groupings pp,  pk, and cp/cpw which appear i n  the 

d i f f e r e n t i a l  E q s .  (sa) may be evaluated with the aid of Table I. 

t h i s  has been done, it i s  easy t o  see t h a t  it i s  necessmy tha t  

Once 

Tw 

and T, be separately specified before proceeding wi t& a solution ' - 

of Eqs. (8a). So again, as f o r  gas D, spec i f ic  problems must be 

considered. 

We now proceed t o  check the reference temperature procedure i n  the 

same manner as w a s  already used f o r  gases B, C ,  and D. The special  

cases selected here f o r  t h i s  purpose are  

Tw = 600' R Case I1 1 Prw = 0 .7  

Tw = 1800' F abs I T, = 1800' R T, = 600' F abs 

Numerical solutions .of Eqs. (ea) provide the following heat t ransfer  

Case I 

Prw = 0.7 

r e s u l t s  

case I 

0.346, case I1 

We now proceed t o  compute al ternate  heat t ransfer  results based on 

the  constant property findings and the reference temperature re la t ion ,  

Eq. (20).  I n  connection with t h i s  computation, it i s  worthwhile noting 

a par t icu lar  feature  associated with the f a c t  t h a t  the gas under con- 

s iderat ion has a temperature-dependent F'randtl number. 

perature range studied for  gas E, the Prandtl number var ia t ion w a s  4.5 

Over the t e m -  

percent. F i r s t ,  it may be observed t h a t  the constant property analysis 
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yields  

4 1/4 Nux/Gr;I4 = / 3 G r L  = function of Pr 

where the Grashof number is  given i n  Eq. (13a). This r e l a t ion  i s  plotted 

i n  Fig. 3 for  the F’randtl number range appropriate to  gases. 

s ider  the application of Eq. (25)  t o  a variable property f l u i d  with 

temperature-dependent F’randtl. number. 

Now, con- 

Under these conditions, not only 

a re  k and V evaluated a t  the reference temperature, but  a lso Pr. 

Using Eq. (25) and Fig. 3 i n  conjunction with the reference tem- 

perature r e l a t ion  ( 2 0 ) ,  a l te rna te  heat t ransfer  r e s u l t s  fo r  gas E for  1 

cases I - m d  I1 &e found t o  be 
r 

0.361, case I 

0.343, case I1 
( 24% ) 

L 

Comparison of Eqs. (24a) and (24b) shows t h a t  even f o r  t h i s  more com- 

pl icated (and more r e a l i s t i c )  s i tuat ion,  the reference temperature pro- 

cedure predicts  very good heat t ransfer  r e su l t s .  

FLUID PROPERTIES OF LIQUID MERCURY 

As already noted i n  the INTRODUCTION, it w a s  i n i t i a l l y  hoped t o  

study the variable property problem i n  several  l i qu id  metals.. However, 

it w a s  observed tha t  the property variations of the  various l i qu id  

metals of technical i n t e re s t  were suf f ic ien t ly  d i s s i m i l a r  t h a t  separate 

investigations appeared t o  be necessary f o r  each one. Moreover, the 

computing time required t o  obtain numerical solutions fo r  l i qu id  metals 

i s  an order of magnitude greater  than tha t  required f o r  gases. 

w a s  found necessary t o  l i m i t  the current study t o  one l i qu id  metal, 

So, it 

namely, mercury. 
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When considering the property variations of l iquid mercury, it might 

be w e l l  first t o  point out some qualitative trends and make comparisons 

with gases. For l iqu id  mercury, the viscosity decreases with increasing 

temperature, while the thermal conductivity increases with temperature. 

On the other hand, f o r  gases, both the viscosity and conductivity in- 

* 

crease with temperature. The Prandtl number of mercury shows a strong 

(percentage) decrease with increasing temperature, while the F'randtl 

number of most gases varies by only a few percent over a large t e m p e r -  

a ture  range. Also, the absolute magnitude of mercury ' d - - P r a d t l  rhnbek:is 

1 o r  2 percent of t ha t  of gases. The above remarks apply t o  normal. 

engineering conditions, e. g.  , gas dfssoci&ion-'fs -xcl&d, 

Property data f o r  l iquid mercury w a s  taken from the Liquid Metals 

Handbook (6) .  To f a c i l i t a t e  numerical integrations, polynomial repre- 

sentations of the following form were f i t t e d  t o  the data 

where t is  i n  degrees Fahrenheit. The coefficients are given i n  

Table 111. 

* 
This i s  by no means the ru le  among l iquid m e t a l s .  
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al 

a2 

a3 

. 

Btu l b  Btu l b  
hr,- f t  - OF- f t  - hr  l b  - OF cu f t  

4.47924 4.34620 0.334620 (lo-') 851.514 

0.830958( -0.991162( lo-') -0.393353 ( -0. 864880(10-1) 

-0.380163 (lo-') 0. 179060(10-4) 0.344649 (lo-') 0.986194( 10") 

0 -0.1275 24 ( ) 0 -0.592566 (lo-') 
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TABLE I11 

CoeffIdIents Foi: The pOlynomT.caZ Representations 

O f  PrapertIeG: O f  LiquId Mercury' 

k P P C P 

HEAT TRANSFER RESULTS FOR LIQUID MERCURY 

F i r s t ,  based on numerical solutions of Eqs. (a), heat t ransfer  re- 

s u l t s  are given for  special  cases. Then, these findings are u t i l i zed  i n  

determining reference temperatures. 

Results f o r  specific cases. - For l iquid mercury, the buoyancy force 

appearing i n  the f i r s t  of Eqs. (8) does not simplify as it did for gases. 

So, it i s  necessary t o  deal with Eqs.  (8) as they stand. Further, the 

nature of the property variations of l iqu id  mercury requires tha t  

and t, be specified separately, i .e. ,  t ha t  specif ic  problems be con- 

& 

sidered. The two cases chosen for  study are described below. I n  both 

instances, tw > to. 
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tw = 600' F = 450' F 

case I1 
to = 100° .) case I t, = 150' F] 

Pr, = 0.0083 Prw = 0.010 

Pr = 0.022 p', = 0.019 
0 

On the  basis of the rather  le@* numerical solutions of the differ-  

e n t i a l  Eqs. (a), the heat transf.er$re&ts are found t o  bk- 

case I 1/4 - 
N%,W/G%,W = NuL,wlGrL,w 

0.0556, case I1 

where the Grashof number i s  given by Eq. (13). 

Reference temperature relation. - Now, it may be inquired as t o  

whether there is  some reference temperature rule which w i l l  cause the 

constant property heat t ransfer  resul ts  t o  coincide with those of Eq. (27). 

It has already been noted tha t  the constant property analysis yields  

heat transfer r e su l t s  which are given by Eq. (25). A plot  of t h i s  re- 

l a t i o n  i s  given on Fig. 4(a) fo r  the F'randtl number range appropriate 

t o  l i qu id  mercury. After 

evaluating k, v ,  B y  and . 
m a k i n g  a few trials, it is  found tha t  by 

Pr a t  

Tr = Tw - 0.3(Tw - T,) (28) 

the constant property heat transfer results:of Fig. 4(a) coincide with 

those of Eq. (27).  

is  found for  both variable property cases studied here. 

It i s  emphasized tha t  t h i s  same reference temperature 

It may next be inquired as to  how well the fi lm temperature, T f j  

might serve as an al ternate  reference temgerature. The heat t ransfer  

calculated f o r  cases I and I1 by evaluating the constant property re- 

s u l t s  of Fig. 4(a)  at  the f i l m  temperature Tf agree quite well with 
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Eq. (27), certainly within the range of most engineering requirements. 

The same statement applies when all the properties (including 

evaluated at 

ture derived for gases. 

a)  are 
Tr = Tw - 0 , 3 8 ( T w  - T-), which was the reference tempera- 

EXPERIMENTAL VERIFICATION 

A complete survey of available experimental heat transfer data for 

free convection on a vertical plate is presented in Ref. 1. It is noted 

there that the bulk of the experiments were carried out in air. 

For air, the conditions of most tests were such that le Tw/TI11.5. 

These experimenters took no note of variable property effects. This 

action is justified by the results of the present analysis; for example, 

see Fig. 2. 

2.2 was achieved. Unfortunately, Weise's apparatus, constructed for - 

horizontal plate tests, was not well suited for vertical plate 

studies. 

In one experiment, that of Weise (7), a value of Tw/T, of 

For liquid mercury, Saunders' (8) work represents the only experi- 

ment on a vertical plate. His tests were carried out at very s m a l l  

temperature differences, and hence variable property effects did not 

enter. 

So, it appears that there are currently no data available to check 

the findings of the analysis presented here. 

RESULTS FOR BOUNDARY LAYER "ELICICNESS 

AND VELOCITY PARAMETERS 

While the heat transfer is by far the result of greatest practical 

importance, there are other quantities which may be of interest. 

brief description is given below of several quantities for which results 

A 
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are  t o  be reported. 

findings derived from the constant property analysis are given, and then 

tables  of reference temperature are supplied f o r  extending these constant 

property results t o  variable property si tuations.  

Following the descriptive paragraphs, numerical 

(a) Boundary-layer thickness, 6 i :  The thickness of the boundary 

layer  is  by no means a precise concept, and i ts  def ini t fon i s  somewhat 

arbi t rary.  The distance from the p l a t e  surface a t  which T - T- has 

shrunk t o  a s m a l l  f ract ion i of the overal l  temperature difference, '  

Tw - T-, i s  used here t o  define aboundary layer thickness. 

ni t ion,  while sat isfactory fo r  Prandtl numbers below unity, should not 

be used fo r  high Prandtl numbers. 

This defi-  

(b) Maximum velocity, Urnax: The ve r t i ca l  velocity _ u  (para l le l  

t o  the plate  surface) takes on zero values both at  the surface and at 

y = 0. and hence achieves some maximum between. 

(c) Location of the maximum velocity, yu: 

p la te  surface at which the velocity maximum occurs is  denoted by 

The distance from the 

yu. 

(a) Frict ion coefficient,  cf: The coefficient of f r i c t i o n  provides 

a dimensionless presentation of the w a l l  shear s t r e s s  zw i n  the fo l -  

lowing manner. 

Cf z 
7, 

The quotient, (u/x), plays the role of a character is t ic  velocity. 

(e) Flow ra te ,  W: The upward flow generated by the f r e e  convec- 

t i o n  forces i s  given by 

W = b L "  pu dy 

where b i s  the p la te  width. 
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Results from the constant property analysis. - Util iz ing the tabu- 

l a t ed  constant property solutions of Ostrach ( 2 )  i n  conjuction with those 

of R e f .  1, results for  the quantit ies described i n  paragraphs (a) through 

(e)  have been computed. A presentation of these findings for  the Prandtl - 
number ranges appropriated t o  gases and t o  l iqu id  mercury i s  made 

respectively on Figs. 3 and 4. Heat t ransfer  r e su l t s  are also shown, The 

Grashof number i s  given by Eq. (13a), 

It was or iginal ly  decided t o  define the boundary-layer thickness as 

the distance from the plate  where (T - T,)/(Tw - T,) = 0.02. 

Prandtl number range of gases, there w a s  no d i f f i cu l ty  evaluating such a 

def in i t ion  f r o m  the available numerical solutions. But, f o r  the low 

Prandtl number range, the numerical solutions were l e s s  precise a t  large 

distances from the w a l l ,  and it was necessary t o  use a thickness based on 

(T - T,)/(Tw - T,) = 0.03. It is  estimated tha t  for  the Prandtl number 

range of mercury, t jOeo2 1 1.25 t jOao5. 

For the 

Variable property resul ts ;  reference temperatures. - I n  a manner 

ident ica l  to tha t  outlined fo r  the heat transfer,  the findings of the 

constant property analysis f o r  the quantit ies described above may be ex- 

tended t o  the variable property si tuation. 

appropriate reference temperatures which are needed to evaluate the re- 

s u l t s  of Figs. 3 and 4. 

It Qnly remains t o  present 

Such reference temperatures, computed using the variable property 

solutions which have been obtained here fo r  gases and f o r  l iquid mercury, 

are l i s t e d  i n  Tables T$(d) a d ( ( $ )  e 3Yae hekt '3mmsfsr- %e%eFeQee I temper- 

atures,  already given by Eqs. (20) and (28), are included for  completeness. 
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0.30 
0.60 
0 
0 
0.10 
0.40 

Reference TemperaYUde l?dha'tlIails E'ar G&e& 
(For use with Fig. 3 )  

h 
60. 02 
%ax 
YU 

C f  

W 

(Tr - T w ) / ( T  - TJ 

0.38 
0.67 

See below 

0.24 
0.10 
0.85 

p = -  T, 
1 T- 

To f ind  urnax f o r  gases, evaluate the Prandtl number of Fig. 3 a t  the 

mean of the extreme values of Pr i n  the  par t icular  problem under 

considerat ion. 

TABLE H ~ q )  

For Liquid Mercur~ 
(For use with Figs. 4(a) and (b)) 

CONCLUDING RENARKS 

From the findings reported here, it appears t ha t  f r ee  convection 

heat transfer under variable property conditions can be computed quickly 

and accurately by using the constant property r e su l t s  i n  conjunction with 

reference temperature re la t ions.  

ence temperature re la t ions are  given by Eqs. (20) and (281, respectively. 

For gases and l iquid mercury, the refer-  
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Further, it may be observed tha t  the f i l m  temperature appears t o  serve 

as an adequate reference temperature (with f3 = 1/T, for gases) for  

most engineering purposes. 

Reference temperature relations f o r  use i n  computing boundary-layer 

thickness and velocity parameters fo r  variable property conditions are 

given i n  Tables I V (  a) and (b) . 

It i s  a pleasure to acknowledge the guidance of Professor Howard W e  

Emmons of Harvard University. 
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Figure 3. - Results of the constant property analysis for  the Prandtl number 
range of gases. 
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Figure 4fa) - Result6 of the constant pmperty analysis for the Prandtl number 
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Figure 4(b) - Results of the constant property analysis for the Prandtl number 
range of liquid mercury. 


